Explainable Prediction of Text Complexity: The Missing Preliminaries for Text Simplification



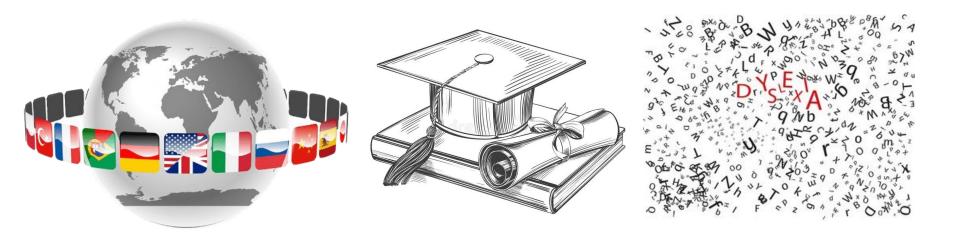
Cristina Garbacea¹, Mengtian Guo³, Samuel Carton⁴, Qiaozhu Mei^{1,2}

¹Department of EECS, ²School of Information, University of Michigan, Ann Arbor, MI, USA ³School of Information and Library Science, University of North Carolina, Chapel Hill, NC, USA ⁴Department of CS, University of Colorado, Boulder, CO, USA

Healthcare

Education

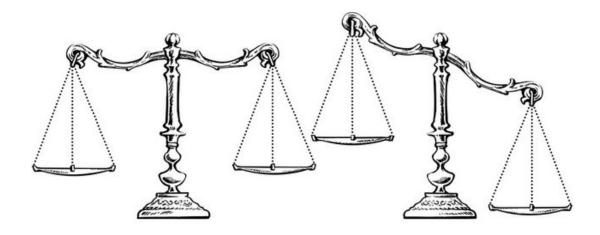
Kids



Non-native speakers

Low education

Medical conditions



- Mismatch between language complexity and literacy skills is a critical source of bias and inequality
- 18 years of education on average for a reader to properly understand the clinical trial descriptions on ClinicalTrials.gov (Wu et al., 2016) => self-selection bias in participants

- Text simplification can improve the fairness and transparency of text information systems
- It is critical to explain the rationale behind the simplification decisions

Ironically, in the literature text simplification lacks transparency!

Approaches to Text Simplification

Lexical Simplification (Devlin, 1999)

 replaces complex words/phrases with simpler alternatives

Semantic Simplification (Kandula et al, 2010):

paraphrases text portions into simpler variants

Syntactic Simplification (Siddhartan, 2006)

 alters the syntactic structure of a sentence End-to-end Simplification (Zhang and Lapata, 2017; Guo et al., 2018; Bercken et al., 2019)

 MT in a monolingual setting regardless of the type of simplifications

Approaches to Text Simplification

Lexical Simplification (Devlin, 1999)

 replaces complex words/phrases with simpler alternatives

Semantic Simplification (Kandula et al, 2010):

paraphrases text portions into simpler variants

Syntactic Simplification (Siddhartan, 2006)

 alters the syntactic structure of a sentence End-to-end Simplification (Zhang and Lapata, 2017; Guo et al., 2018; Bercken et al., 2019)

MT in a monolingual setting regardless of the type of simplifications

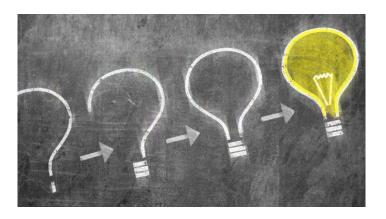
End-to-end Text Simplification Challenges

absence of large-scale parallel complex → simple training data

- lack of black-box interpretability (Alva-Manchengo et al, 2017)
- evaluation can favour shorter, not simpler, variants (Napoles et al, 2011)
- success is often compromised in out-of-sample, real world scenarios (D'Amour et al, 2020)

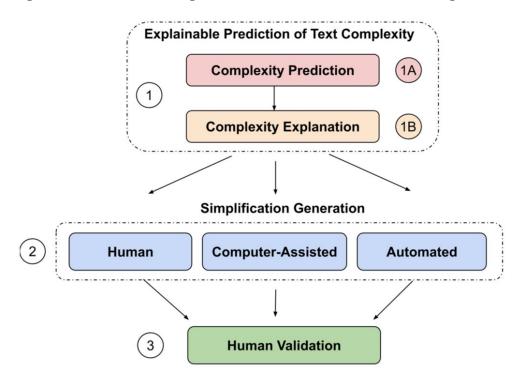
Our Work Fills in the Gap in End-to-end Text Simplification

Motivation: increasing the transparency and explainability of a machine learning procedure may help its generalization into unseen scenarios (Doshi-Velez and Kim, 2018)

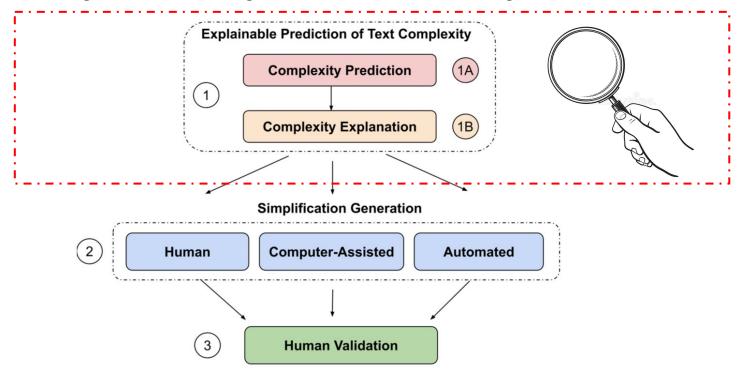


Contribution: the general problem of text simplification can be formally decomposed into a compact and transparent pipeline of modular tasks => improved performance of black-box simplification models

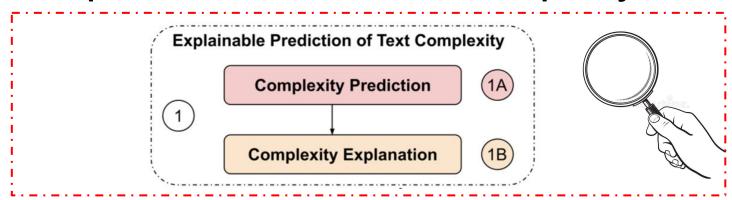
Explainable Pipeline for Text Simplification



Explainable Pipeline for Text Simplification



Explainable Prediction of Text Complexity



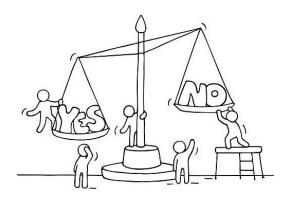
It is critical to explain the rationale behind simplification decisions, especially behind a black-box model:

- 1) Complexity Prediction: classify a piece of text into two categories, needing simplification or not
- 2) Complexity Explanation: highlight parts of the text that need to be simplified

No prior work has addressed the explainability of text complexity prediction!

Explainable Prediction of Text Complexity

Complexity Prediction



Candidate Models:

Shallow Classifiers: Naive Bayes (NB), Logistic Regression (LR), Support Vector Machines (SVM), Random Forests (RF)

Deep Classifiers: LSTM & CNN (word level and char-level), Extractive Adversarial Networks (Carton et al, 2018)

Pre-trained Classifiers: ULMFit (Howard et al, 2018), BERT (Devlin et al, 2019), XLNeT (Yang et al, 2019)

Evaluation Metric: classification accuracy

Explainable Prediction of Text Complexity

Complexity Explanation

Candidate Models:

LIME (Ribeiro et al, 2016), SHAP (Lundberg et al, 2017) Extractive Adversarial Networks (Carton et al, 2018)

Evaluation Metrics:

Tokenwise Precision, Recall, F1 Word-level Edit distance (ED) (Levenstein, 1966) Translation Edit Rate (TER) (Snover et al, 2006)

Baselines:

- 1) Random Highlighting: randomly draw the size and the positions of tokens to highlight
- **2)** Lexicon based highlighting: Age-of-Acquisition (AoA) lexicon (Kuperman et al., 2012)
- 3) Feature highlighting: most important features of best LR models

Text Simplification Datasets

Datasets from three different domains:

- **news**: Newsela (Xu et al, 2015) with splits from (Zhang and Lapata, 2017)
- Wikipedia: WikiLarge (Kauchak, 2013) with splits from (Zhang and Lapata, 2017)
- scientific papers: Biendata (2019) corpus of research papers matched with press releases

Table 1: Aligned complex-simple sentence pairs.

Dataset	Training	Validation	Test		
Newsela	94,208 pairs	1,129 pairs	1,077 pairs		
WikiLarge	208,384 pairs	29,760 pairs	59,546 pairs		
Biendata	29,700 pairs	4,242 pairs	8,486 pairs		

Inferring Ground-truth Labels

For **complexity prediction**:

- Label 1: complex sentence != aligned simple sentence
- Label 0: complex sentence == aligned simple sentence

For **complexity explanation**:

- ideally, ground truth annotations at the token level are available
- as a proxy, all tokens w_i in complex sentence d which are absent in simple sentence d' are candidate words for deletion or substitution

Complexity Prediction Results

Does an input sentence need to be simplified?

Difficulty of complexity prediction task varies: across models:

pre-trained classifiers yield superior performance

across domains:

~80% accuracy for Newsela and WikiLarge,

>95% accuracy for Biendata

Classifier	Newsela	WikiLarge	Biendata
NB n-grams	73.10 %	62.70 %	84.30 %
NB enriched features	73.10 %	63.10 %	86.00 %
LR n-grams	75.30 %	71.90 %	89.60 %
LR enriched features	76.30 %	72.60 %	91.70 %
SVM n-grams	75.20 %	71.90 %	89.50 %
SVM enriched features	77.39 %	70.16 %	88.60 %
RF n-grams	71.50 %	71.50 %	84.60 %
RF enriched features	74.40 %	73.40 %	87.00 %
LSTM (word-level)	73.31 %	71.62 %	89.87 %
CNN (word-level)	70.71 %	69.27 %	89.05 %
CNN (char-level)	$78.83\%^{\dagger}$	74.88 %	88.00 %
CNN (word & char-level)	75.90	74.00 %	92.30 %
Extractive Adversarial Networks	72.76 %	71.50 %	88.64 %
ULMFiT	80.83%**	74.80 %	94.17 %
BERT	77.15 %	81.45%**	94.43 %
XLNeT	78.83% [†]	73.49 %	95.48%*

How well can complexity classification be explained?

Evaluation: TER, ED 1.5 metrics (the lower the better) capture variations among explanations

Baselines: AoA lexicon, LR features are strong baselines

Models:

Dataset	Explanation Model	P	R	F1	TER	ED 1.5
	Random	0.515	0.487	0.439	0.985	13.825
	AoA lexicon	0.556	0.550	0.520	0.867	12.899
	LR Features	0.522	0.250	0.321	0.871	12.103
Newsela	LIME & LR	0.535	0.285	0.343	0.924	12.459
	LIME & LSTM	0.543	0.818	0.621	0.852	11.991
	SHAP & LR	0.553	0.604	0.546	0.848	12.656
	Extractive Networks	0.530	0.567	0.518	0.781	11.406
	Random	0.412	0.439	0.341	1.546	17.028
	AoA lexicon	0.427	0.409	0.357	1.516	16.731
	LR Features	0.442	0.525	0.413	0.993	17.933
WikiLarge	LIME & LR	0.461	0.509	0.415	0.988	18.162
	LIME & LSTM	0.880	0.470	0.595	1.961	25.051
	SHAP & LR	0.842	0.531	0.633	1.693	22.811
	Extractive Networks	0.452	0.429	0.359	1.434	16.407
	Random	0.743	0.436	0.504	1.065	12.921
	AoA lexicon	0.763	0.383	0.475	1.064	13.247
Biendata	LR Features	0.796	0.257	0.374	0.979	10.851
	LIME & LR	0.837	0.466	0.577	0.982	10.397
	LIME & LSTM	0.828	0.657	0.713	0.952	16.568
	SHAP & LR	0.825	0.561	0.647	0.979	11.908
	Extractive Networks	0.784	0.773	0.758	0.972	10.678

How well can complexity classification be explained?

Evaluation: TER, ED 1.5 metrics (the lower the better) capture variations among explanations

Baselines: AoA lexicon, LR features are strong baselines

Models:

Dataset	Explanation Model	P	R	F1	TER	ED 1.5
	Random	0.515	0.487	0.439	0.985	13.825
	AoA lexicon	0.556	0.550	0.520	0.867	12.899
	LR Features	0.522	0.250	0.321	0.871	12.103
Newsela	LIME & LR	0.535	0.285	0.343	0.924	12.459
	LIME & LSTM	0.543	0.818	0.621	0.852	11.991
	SHAP & LR	0.553	0.604	0.546	0.848	12.656
	Extractive Networks	0.530	0.567	0.518	0.781	11.406
	Random	0.412	0.439	0.341	1.546	17.028
	AoA lexicon	0.427	0.409	0.357	1.516	16.731
	LR Features	0.442	0.525	0.413	0.993	17.933
WikiLarge	LIME & LR	0.461	0.509	0.415	0.988	18.162
	LIME & LSTM	0.880	0.470	0.595	1.961	25.051
	SHAP & LR	0.842	0.531	0.633	1.693	22.811
	Extractive Networks	0.452	0.429	0.359	1.434	16.407
	Random	0.743	0.436	0.504	1.065	12.921
Biendata	AoA lexicon	0.763	0.383	0.475	1.064	13.247
	LR Features	0.796	0.257	0.374	0.979	10.851
	LIME & LR	0.837	0.466	0.577	0.982	10.397
	LIME & LSTM	0.828	0.657	0.713	0.952	16.568
	SHAP & LR	0.825	0.561	0.647	0.979	11.908
	Extractive Networks	0.784	0.773	0.758	0.972	10.678

How well can complexity classification be explained?

Evaluation: TER, ED 1.5 metrics (the lower the better) capture variations among explanations

Baselines: AoA lexicon, LR features are strong baselines

Models:

Dataset	Explanation Model	P	R	F1	TER	ED 1.5
	Random	0.515	0.487	0.439	0.985	13.825
	AoA lexicon	0.556	0.550	0.520	0.867	12.899
	LR Features	0.522	0.250	0.321	0.871	12.103
Newsela	LIME & LR	0.535	0.285	0.343	0.924	12.459
	LIME & LSTM	0.543	0.818	0.621	0.852	11.991
	SHAP & LR	0.553	0.604	0.546	0.848	12.656
	Extractive Networks	0.530	0.567	0.518	0.781	11.406
	Random	0.412	0.439	0.341	1.546	17.028
	AoA lexicon	0.427	0.409	0.357	1.516	16.731
	LR Features	0.442	0.525	0.413	0.993	17.933
WikiLarge	LIME & LR	0.461	0.509	0.415	0.988	18.162
	LIME & LSTM	0.880	0.470	0.595	1.961	25.051
	SHAP & LR	0.842	0.531	0.633	1.693	22.811
	Extractive Networks	0.452	0.429	0.359	1.434	16.407
	Random	0.743	0.436	0.504	1.065	12.921
	AoA lexicon	0.763	0.383	0.475	1.064	13.247
Biendata	LR Features	0.796	0.257	0.374	0.979	10.851
	LIME & LR	0.837	0.466	0.577	0.982	10.397
	LIME & LSTM	0.828	0.657	0.713	0.952	16.568
	SHAP & LR	0.825	0.561	0.647	0.979	11.908
	Extractive Networks	0.784	0.773	0.758	0.972	10.678

How well can complexity classification be explained?

Evaluation: TER, ED 1.5 metrics (the lower the better) capture variations among explanations

Baselines: AoA lexicon, LR features are strong baselines

Models:

Dataset	Explanation Model	P	R	F1	TER	ED 1.5
	Random	0.515	0.487	0.439	0.985	13.825
	AoA lexicon	0.556	0.550	0.520	0.867	12.899
	LR Features	0.522	0.250	0.321	0.871	12.103
Newsela	LIME & LR	0.535	0.285	0.343	0.924	12.459
	LIME & LSTM	0.543	0.818	0.621	0.852	11.991
	SHAP & LR	0.553	0.604	0.546	0.848	12.656
	Extractive Networks	0.530	0.567	0.518	0.781	11.406
	Random	0.412	0.439	0.341	1.546	17.028
	AoA lexicon	0.427	0.409	0.357	1.516	16.731
	LR Features	0.442	0.525	0.413	0.993	17.933
WikiLarge	LIME & LR	0.461	0.509	0.415	0.988	18.162
	LIME & LSTM	0.880	0.470	0.595	1.961	25.051
	SHAP & LR	0.842	0.531	0.633	1.693	22.811
	Extractive Networks	0.452	0.429	0.359	1.434	16.407
	Random	0.743	0.436	0.504	1.065	12.921
Biendata	AoA lexicon	0.763	0.383	0.475	1.064	13.247
	LR Features	0.796	0.257	0.374	0.979	10.851
	LIME & LR	0.837	0.466	0.577	0.982	10.397
	LIME & LSTM	0.828	0.657	0.713	0.952	16.568
	SHAP & LR	0.825	0.561	0.647	0.979	11.908
	Extractive Networks	0.784	0.773	0.758	0.972	10.678

Benefit of Complexity Prediction

A smart end-to-end simplification model should not further simplify input if already simple

Select current best pre-trained models from literature:

- ACCESS (Martin et al, 2020)
- DMLMTL (Guo et al, 2018)

Out-of-sample simple sentences are changed:

> 90% DMLMTL, >70% ACCESS

Benefit of Complexity Prediction

A smart end-to-end simplification model should not further simplify input if already simple

Select current best pre-trained models from literature:

- ACCESS (Martin et al, 2020)
- DMLMTL (Guo et al, 2018)

Out-of-sample simple sentences are changed:

> 90% DMLMTL, >70% ACCESS

Blindly simplifying texts regardless of complexity level (erroneously) over-simplifies simple sentences!

Out-of-Sample Simple Sentences Incorrectly Simplified by State-of-the-Art Text Simplification Models

- In Ethiopia, HIV disclosure is low → In Ethiopia , HIV is low (ACCESS)
- Mustafa Shahbaz , 26 , was shopping for books about science . \rightarrow Mustafa Shahbaz , 26 years old , was a group of books about science . (ACCESS)
- Healthy diet linked to lower risk of chronic lung disease → Healthy diet linked to lung disease (DMLMTL)
- ullet Social workers can help patients recover from mild traumatic brain injuries ullet Social workers can cause better problems . (DMLMTL)

Semantic, syntactic and logical errors abound in the simplified simple sentences!

Benefit of Complexity Prediction

Without Complexity Prediction:

evaluation loss when simple sentences are over-simplified

With Complexity Prediction:

evaluation loss for an imperfect complexity predictor

Q: Which loss is higher?

- complexity predictors are > 80% accurate
- considerable drop of errors (30-70%) in all evaluation metrics with complexity prediction; accurate predictor, higher benefit

Benefit of Complexity Prediction

Without Complexity Prediction:

evaluation loss when simple sentences are over-simplified

With Complexity Prediction:

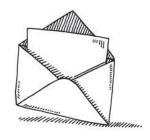
evaluation loss for an imperfect complexity predictor

Q: Which loss is higher?

- complexity predictors are > 80% accurate
- considerable drop of errors (30-70%) in all evaluation metrics with complexity prediction; accurate predictor, higher benefit

Out-of-sample performance substantially improves with complexity prediction!

Main Takeaways



Formally decompose text simplification into a compact pipeline of sub-tasks **Explainable Complexity Prediction** preliminary step for text simplification

Complexity Prediction: the system should first decide if simplification is necessary often neglected by existing end-to-end simplifiers => biased outputs, lack of generalization

Complexity Explanation: highlight differences between original and simplified sentence validate and evaluate black-box models, enhance fidelity and fairness in real-world

Major motivation of text simplification: improve fairness and transparency it is critical to explain the rationale behind the simplification decisions behind a black-box model

